% Problem 1: clear all; clc; close all; % Data x = [0 10 15 20 22.5 30]; % x values fx = [0 227.04 362.78 517.35 602.97 901.67]; % corresponding y values x_new = 16; % x value for interpolation % Calculate first-order polynomial interpolation using Newton's divided difference fx0 = fx(3); fx1 = fx(4); x0 = x(3); x1 = x(4); % Divided differences f0 = fx0; f1 = (fx1 - fx0) / (x1 - x0); % Evaluate the interpolated y value using Newton's interpolation formula fx_new = f0 + (x_new - x0) * f1; % Plot original data and interpolated point using Newton Interpolation figure plot(x, fx, 'bo-', x_new, fx_new, 'rx') grid on, xlabel('x data'), ylabel('y data'), title('First-Order Polynomial Interpolation') legend('Data', 'Interpolated Point', 'location', 'northwest') --------------------------------------------------------------------------------------------------- % Problem 2: clear all; clc; close all; % Data x = [0 10 15 20 22.5 30]; fx = [0 227.04 362.78 517.35 602.97 901.67]; x_new = 16; % x value for interpolation % Calculate second-order polynomial interpolation using Newton's divided difference fx0 = fx(2); fx1 = fx(3); fx2 = fx(4); x0 = x(2); x1 = x(3); x2 = x(4); % Divided differences f0 = fx0; f1 = (fx1 - fx0) / (x1 - x0); f2 = ((fx2 - fx1) / (x2 - x1) - f1) / (x2 - x0); % Evaluate the interpolated y value using Newton's interpolation formula fx_new = f0 + (x_new - x0) * f1 + (x_new - x0) * (x_new - x1) * f2; % Plot original data and interpolated point figure plot(x, fx, 'bo-', x_new, fx_new, 'rx') grid on, xlabel('x data'), ylabel('y data'), title('Second-Order Polynomial Interpolation') legend('Data', 'Interpolated Point', 'location', 'northwest') --------------------------------------------------------------------------------------------------- % Problem 3: clear all; clc; close all; % Data x = [0 10 15 20 22.5 30]; fx = [0 227.04 362.78 517.35 602.97 901.67]; x_new = 16; % x value for interpolation % Calculate third-order polynomial interpolation using Newton's divided difference fx0 = fx(2); fx1 = fx(3); fx2 = fx(4); fx3 = fx(5); x0 = x(2); x1 = x(3); x2 = x(4); x3 = x(5); % Divided differences f0 = fx0; f1 = (fx1 - fx0) / (x1 - x0); f2 = ((fx2 - fx1) / (x2 - x1) - f1) / (x2 - x0); f3 = (((fx3 - fx2) / (x3 - x2) - (fx2 - fx1) / (x2 - x1)) / (x3 - x1) - f2) / (x3 - x0); % Evaluate the interpolated y value using Newton's interpolation formula fx_new = f0 + (x_new - x0) * f1 + (x_new - x0) * (x_new - x1) * f2 + ... (x_new - x0) * (x_new - x1) * (x_new - x2) * f3; % Plot original data and interpolated point figure plot(x, fx, 'ko-', x_new, fx_new, 'rx') grid on, xlabel('x data'), ylabel('y data'), title('Third-Order Polynomial Interpolation') legend('Data', 'Interpolated Point', 'location', 'northwest')