clc; clear all; close all; % Define the function f(x) k = 1; f = @(x) -k*(-pi < x & x < 0) + k*(0 < x & x < pi); % Define the period and the time range to plot T = 2*pi; x = -7*pi:0.001:7*pi; n = 5; % Number of terms L = pi; % Half period fs = zeros(size(x)); % Initialize Fourier series approximation % Compute the periodic signal using the modulo function Fp = f(mod(x - pi, T) - pi); % Fourier series approximation a0 = 1/(2*L) * integral(f, -L, L); % Compute a0 an = zeros(1, n); % Initialize an coefficients bn = zeros(1, n); % Initialize bn coefficients % Compute an and bn coefficients for i = 1:n an(i) = 1/L * integral(@(x) f(x) .* cos(i * pi * x / L), -L, L); % Compute an bn(i) = 1/L * integral(@(x) f(x) .* sin(i * pi * x / L), -L, L); % Compute bn fs = fs + an(i) * cos((i * pi * x) / L) + bn(i) * sin((i * pi * x) / L); % Add terms to Fourier series end fs = a0 + fs; % Final Fourier series with a0 included % Plot the original function and the Fourier series approximation figure; plot(x, Fp, 'b-', 'LineWidth', 2); hold on; plot(x, fs, 'r-', 'LineWidth', 2); title('Fourier Series Approximation for f(x)'); xlabel('x'); ylabel('f(x) and Fourier Series Approximation'); legend('Original Function', 'Fourier Series Approximation'); grid on; %Question2 clc;clear all; close all; % Define the function f(x) k = 1; f = @(x) 0*(-2