%Question1 % First part clear all;clc; syms x ; N = 2;M = 2; % Define variable `k` k = 3 + 2 * (x^2); % Initialize `Z` and `V` arrays Z = zeros(N, M); V = zeros(N, 1); % Loop through to calculate `Z` and `V` for i = 1:N w(i) = x - x^(i + 1); for j = 1:M bn(j) = x - x^(j + 1); B = bn(j); Z(i, j) = Z(i, j) + int(w(i) * (-1 * diff(diff(B, x), x)), x, 0, 1); V(i)=int(k * w(i), x, 0, 1); end end % Define a predefined `Z` matrix Z = [ (1/3), (1/2); (1/2), (4/5) ]; % Second Part % Define the right-hand side vector V = [3/5; 11/12]; % Solve the linear equation system I = Z \ V % Plotting results x = 0:0.1:1; fx = 13/10 * (x - x.^2) + 1/3 * (x - x.^3); fe = 5/3 * x - 3/2 * x.^2 - 1/6 * x.^4; % Plot with two lines plot(x, fx, 'o-b', 'LineWidth', 2); hold on; plot(x, fe, 'r', 'LineWidth', 2); grid on;