%Question1 clc;clear all; close all; syms x u1 u2 u3 u4 u5 Phi I; Phi(1,1) = 1-4*x; Phi(2,1) = 4*x; Phi(2,2) = 2-4*x; Phi(3,2) = 4*x-1; Phi(3,3) = 3-4*x; Phi(4,3) = 4*x-2; Phi(4,4) = 4-4*x; Phi(5,4) = 4*x-3; coord = [0, 0.25, 0.5, 0.75, 1]; for i=1:5 % Integral loop I(i) = 0; % Initialize the i-th integral to zero. for j=1:4 % Element loop w = Phi(i,j); dwdx = diff(w, x); u = u1*Phi(1,j) + u2*Phi(2,j) + u3*Phi(3,j) + u4*Phi(4,j) + u5*Phi(5,j); dudx = diff(u, x); I(i) = I(i) + int(dwdx*dudx - w*u + w*x^2, x, coord(j), coord(j+1)); end end % Linear equation system matrix I = [ (47/6), (-97/24), 0; (-97/24), (47/6), (-97/24); 0, (-97/24), (47/6) ]; % Define the right-hand side vector b = [-7/384 ; -25/384 ;-55/384]; % Solve the linear equation system u = I\b % Plotting coord = [0, 0.25, 0.5, 0.75, 1]; u = [0 -0.0232 -0.0405 -0.0392 0]; % Assuming these are the correct values of u plot(coord, u, 'o-b', 'LineWidth', 2) hold on x = 0:0.01:1; uExact = (sin(x) + 2*sin(1-x)) / sin(1) + x.*x - 2; plot(x, uExact, 'r', 'LineWidth', 2) %-------------------------------------------------------------