%Question1 clc;clear all; close all; % Step size h = 0.1; % Define the function for the derivative dy/dx dy_dx = @(x, y) (5 * x^2 - y) / exp(x + y); % Starting point x = 0:h:1; y = zeros(1, length(x)); y(1) = 1; % Compute derivative and update y using Euler's method for i = 1:length(x)-1 F1= h * dy_dx(x(i), y(i)); F2 = h * dy_dx(x(i) + h/2, y(i) + F1/2); F3 = h * dy_dx(x(i) + h/2, y(i) + F2/2); F4 = h * dy_dx(x(i) + h, y(i) + F3); y(i + 1) = y(i) + (F1 + 2*F2 + 2*F3 + F4) / 6; end % Plotting plot(x, y, 'o-'); grid on xlabel('x'); ylabel('y'); title('Solution using Fourth-order Runge-Kutta Method'); %------------------------------------------------------------- %Question2 clc;clear all; close all; % Step size h = 0.2; % Define the function for the derivative dy/dx dy_dx= @(x, y) (x + y) * sin(x * y); % Starting point x = 0:h:2; y = zeros(1, length(x)); y(1) = 5; % Compute derivative and update y using fourth-order Runge-Kutta method for i = 1:length(x)-1 F1 = h * dy_dx(x(i), y(i)); F2 = h * dy_dx(x(i) + h/2, y(i) + F1/2); F3 = h * dy_dx(x(i) + h/2, y(i) + F2/2); F4 = h * dy_dx(x(i) + h, y(i) + F3); y(i + 1) = y(i) + (F1 + 2*F2 + 2*F3 + F4) / 6; end % Plotting plot(x, y, 'o-'); grid on; xlabel('x'); ylabel('y'); title('Solution using Fourth-order Runge-Kutta Method'); ---------------------------------------------------------------------- %Question3 clc; clear all; close all; % Step size h = 0.1; % Define the function for the derivative dy/dx dy_dx = @(x, y) (4-y^2)/(2*x); % Starting point x = 2:h:3; y = zeros(1, length(x)); y(1) = 1; y_euler(1) = 1; % Compute derivative and update y using Fourth-order Runge-Kutta method for i = 1:length(x)-1 F1 = h * dy_dx(x(i), y(i)); F2 = h * dy_dx(x(i) + h/2, y(i) + F1/2); F3 = h * dy_dx(x(i) + h/2, y(i) + F2/2); F4 = h * dy_dx(x(i) + h, y(i) + F3); y(i + 1) = y(i) + (F1 + 2*F2 + 2*F3 + F4) / 6; end % Compute derivative and update y using Euler's method for i = 1:length(x)-1 y_euler(i + 1) = y_euler(i) + (h) * dy_dx(x(i), y(i)); end % Exact solution f = 2*(3*x.^2-4)./(3*x.^2+4); % Plotting plot(x, y, 'oc:', 'LineWidth', 2) hold on plot(x, f, 'r--', 'LineWidth', 2); plot(x, y_euler, 'ob-', 'LineWidth', 2); xlabel('x'); ylabel('y'); title('Comparison of Fourth-order Runge-Kutta Method and Euler Method'); legend('Runge-Kutta Method', 'Exact Solution', 'Euler Method'); grid on;