%Question1 clc;clear all; close all; % Step size h = 0.1; % Define the function for the derivative dy/dx dy_dx = @(x, y) (y * log(y)) / x; % Starting point x = 2:h:3; y = zeros(1, length(x)); y(1) = exp(1); % Compute derivative and update y using Euler's method for i = 1:length(x)-1 y(i + 1) = y(i) + ((h) * dy_dx(x(i), y(i))); end % Exact solution f = exp(0.5 * x); % Plotting plot(x, y, 'b-', 'LineWidth', 2) hold on plot(x, f, 'r--', 'LineWidth', 2); legend('Approximate Solution', 'Exact Solution'); xlabel('x'); ylabel('y'); title('Approximation vs. Exact Solution'); xlim([2, 3]); ylim([0, 5]); %------------------------------------------------------------- %Question2 clc;clear all; close all; % Step size h = 0.1; % Define the function for the derivative dy/dx dy_dx = @(x, y) sin(x + y) - exp(x); % Starting point x = 0:h:3.2; y = zeros(1, length(x)); y(1) = 4; % Compute derivative and update y using Euler's method for i = 1:length(x)-1 y(i + 1) = y(i) + (h * dy_dx(x(i), y(i))); end % Plotting plot(x, y, 'b-', 'LineWidth', 2) xlabel('x');ylabel('y'); title('Approximate Solution');