% Problem 1: Approximating the root of x^2 - 3 using Newton's method clear all close all % Define the function and its derivative symbolically fun = @(x) x^2 - 3; df = @(x) 2*x; % Initial guess for the root x0 = -1.5; % Find the actual root using fzero as a reference actualRoot = fzero(fun, x0); % Display header for the iteration information table fprintf(' n | slope | Computed | Actual | Absolute Error\n'); fprintf([repmat('-', 1, 70) '\n']); % Iterate to refine the root approximation using Newton's method n = 0; while abs(fun(x0)) > 1e-4 n = n + 1; % Calculate the slope and y-intercept of the tangent line slope = df(x0); b = fun(x0) - slope * x0; % Update the root approximation using the tangent line x0 = -b / slope; % Display the current iteration information in a table fprintf(' %2d | %5.10f | %5.10f | %5.10f | %5.10f\n', ... n, slope, x0, actualRoot, abs(fun(x0))); end -------------------------------------------------------------------------------------- % Problem 2: Approximating the root of x^3 - 3*x + 1 using Newton's method clear all close all % Define the function and its derivative symbolically fun = @(x) x^3 - 3*x + 1; df = @(x)3*x^2-3; % Initial guess for the root x0 = -1.5; % Find the actual root using fzero as a reference actualRoot = fzero(fun, x0); % Display header for the iteration information table fprintf(' n | slope | Computed | Actual | Absolute Error\n'); fprintf([repmat('-', 1,67) '\n']); % Iterate to refine the root approximation using Newton's method n = 0; while abs(fun(x0)) > 1e-5 n = n + 1; % Calculate the slope and y-intercept of the tangent line slope = df(x0); b = fun(x0) - slope * x0; % Update the root approximation using the tangent line x0 = -b / slope; % Display the current iteration information in a table fprintf(' %2d | %7.10f | %9.10f | %11.10f | %11.10f\n', ... n, slope, x0, actualRoot, abs(fun(x0))); end --------------------------------------------------------------------------------------- % Problem 3: Approximating the root of x^3 - 2*x^2 - 5 using Newton's method clear all close all % Define the function and its derivative symbolically fun = @(x) x^3 - 2*x^2 - 5; df = @(x) 3*x^2-4*x; % Initial guess for the root x0 = 2.5; % Find the actual root using fzero as a reference actualRoot = fzero(fun, x0); % Display header for the iteration information table fprintf(' n | slope | Computed | Actual | Absolute Error\n'); fprintf([repmat('-', 1, 68) '\n']); % Iterate to refine the root approximation using Newton's method n = 0; while abs(fun(x0)) > 1e-6 n = n + 1; % Calculate the slope and y-intercept of the tangent line slope = df(x0); b = fun(x0) - slope * x0; % Update the root approximation using the tangent line x0 = -b / slope; % Display the current iteration information in a table fprintf(' %2d | %15.10f | %5.10f | %5.10f | %5.10f\n', ... n, slope, x0, actualRoot, abs(fun(x0))); end