%question 1 clear all; clc; n = 5; % Number of iterations alfa = 0.5; % Learning rate % Define the function syms x1 x2; fx = 25*x1^2 + x2^2; % Compute gradient x = [1; 3]; c=zeros(1,2); % Gradient descent iterations for i = 1:n % Compute gradient at current point x c = double(subs(gradient(fx, [x1, x2]), [x1; x2], x)) % Normalize gradient (optional step, for some methods) cbar = c / norm(c) % Update x using gradient descent formula x = x - alfa * cbar; % Evaluate the function at the new x fval = 25 * (x(1)^2) + (x(2)^2); % Display current iteration information disp(['Iteration ', num2str(i)]); disp(['x = ', num2str(x')]); disp(['f(x) = ', num2str(fval)]); disp('---'); end