EE202 Numerical Methods for Engineers Laboratory Assignment: 1

** Find solutions of the following questions in Matlab:

Question 1:

Find the negative root of $f(x) = x^2 - 3$ or solve $x^2 - 3 = 0$ by using Newton's method. Use of the Intermediate Value Theorem for locating an approximate root. (with an error less than 10^{-4} .)

x	У
0	-3
-1	-2
-2	1

Question 2:

Approximate all three roots of $f(x) = x^3 - 3x + 1$ by using Newton's method. Use of the Intermediate Value Theorem for locating an approximate root. (with an error less than 10^{-5} .)

Question 3:

Using the Newton-Raphson method, find an approximate root of the equation $f(x) = x^3 - 2x^2 - 5 = 0$ within the interval [2, 3] with an error less than 10^{-6} .

* When you run your code to compute the output, it should be similar to this:

Com	nmar	nd	Window							
	n	I	slope	I.	Computed	I	Actual	I	Absolute Error	
-	1	I	-3.000000000)	-1.7500000000	I	-1.7320508076	I	0.0625000000	
	2	T	-3.500000000) (-1.7321428571	T	-1.7320508076	1	0.0003188776	
	3	I	-3.4642857143	3	-1.7320508100	I	-1.7320508076	I	0.000000085	