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EE 202 Numerical Methods for Engineers 
 

COURSE CONTENTS 
 
1. The Newton’s Method for Root Approximations. 
2. Interpolation by Newton’s Divided Differences. 
3. Interpolation by Trigonometric Functions. 
4. Curve fitting by the Least Squares Algorithm. 
5. Series Representation of Functions (Fourier Series) 
6. Solution of Differential Equations; Euler’s Method. 
7. The Runge Kutta 4th Degree Method. 
8. The Method of Finite Differences (FD). 
9. The Finite Element Method (FEM). 
10. Solution of Integral Equations; Method of Moments. 
11. Optimization; Convexity and Convergence. 
12. The Steepest Descent Method. 
13. The Gauss-Newton Method. 
14. Other Algorithms than Gradients such as the Genetic Algorithm. 
 
GRADING 
 
LABS                        20%  
MID TERM              40% 
FINAL EXAM          40% 
 
 
1. The Newton’s Method for Root approximations. 
 
The roots of a function are the points where the function is equal to zero.  
 
At these points; the graph of the function touches the x-axis. 
 
Newton's method estimates these roots using tangent lines. 
 
Example: Find the roots of    2 3f x x   or solve 2 3 0x    by using Newton's method. 

 
Use of the Intermediate Value Theorem for locating an approximate root. 
 
Make an x-y chart to find the changes of sign in the function.  
 

x y 
0 -3 
1 -2 
2 1 

 
There is a change in the sign between f(1) and f(2). 
 
Intermediate Value Theorem says that there is a root between x=1 and x=2. 
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Next step is to find a point of tangency on the function in order to have an initial guess for the root. 
 
Let's have a guess for the root to be x=1.5, i.e., x1=1.5. 
 

The corresponding  y for x1=1.5 is    2
1.5 3 2.25 3 0.75f x        which is not very close to 0 

 
We conclude that the point of tangency is  (1.5, –.75). 
 
Then we write the equation of the tangent line at the point of tangency which is  (1.5, –.75). 
 
For this purpose we first find the derivative at the point of tangency 
 
 
 
 

2 3

' 2

' 1.5 2 1.5 3

f x x

f x x

f

 



    

i.e., the slope of the tangent line is m=3  
 
To find the tangent line we use the equation y mx b 

  
The point of tangency was  (1.5, –0.75) so

  
0.75 3 1.5 5.25b b      

 So the tangent line equation is y = 3x – 5.25 

 

Next we find the point at which the tangent line crosses the x-axis 

 

So we equate the tangent line equation to zero, i.e., 0 = 3x – 5.25 →  x = 1.75 

 

We choose this point of x = 1.75 as the new approximate of the root. 

 

The question: How close is this approximation? 

 
To answer this, find the value of the function y at this point of approximation, i.e., at x=1.75. The 
closer the function is to 0, the more accurate our approximate is. 
 
If the function equals exactly 0, then the root is exact. 
 
For x=1.75, f(x) = x2–3 becomes f(1.75) = (1.75)2–3 =.0625 
 
Not too far from 0 but also not very close to 0.

  
We conclude that the point of tangency is  (1.75,0.0625). 

Now with this new approximate root of 1.75 we repeat the above steps, i.e., 
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Then we write the equation of the tangent line at the point of tangency which is  (1.75,0.0625). 
 
For this purpose we first find the derivative at the point of tangency 
 
 
 
 

2 3

' 2

' 1.75 2 1.75 3.5

f x x

f x x

f

 



    

i.e., the slope of the tangent line is m=3.5  
 
To find the tangent line we use the equation y mx b 

  
The point of tangency was  (1.75,0.0625) so

  
0.0625 3.5 1.75 6.0625b b     

 So the tangent line equation is y=3.5x –6.0625 

 

Next we find the point at which the tangent line crosses the x-axis 

 

So we equate the tangent line equation to zero, i.e., 0=3.5x-6.0625 →  x=1.732143 

 

We choose this point of x=1.732143 as the third approximate of the root. 

 

The question: How close is this approximation? 

 
To answer this, find the value of the function y at this point of approximation, i.e., at x=1.732143. 
The closer the function is to 0, the more accurate our approximate is. 
 
If the function equals exactly 0, then the root is exact. 
 
For x=1.732143, f(x) = x2–3 becomes f(1.732143) = (1.732143)2–3 =0.000319 
 
Not too far from 0 so 1.732143 can be taken as the root.  
 
But if the accuracy is not satisfactory, we can do one or more extra approximations.  
 
Using Newton's method, only one root at a time can be found.  
 
In order to find all the roots of a function using Newton's method, we need to do the same steps for 
every sign change in the function  
 
So to repeat for the other root 
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Use of the Intermediate Value Theorem for locating an approximate root. 
 
Make an x-y chart to find the changes of sign in the function.  

  2 3f x x   

 
 

x y 
0 -3 
-1 -2 
-2 1 

 
There is a change in the sign between f(–1) and f(–2). 
 
Intermediate Value Theorem says that there is a root between x = –1 and x = –2. 
 
THE FOLLOWING IS HW-1 
 
Next step is to find a point of tangency on the function in order to have an initial guess for the root. 
 
Let's have a guess for the root to be x = –1.5, i.e., x1 = –1.5. 
 

The corresponding  y for x1 = –1.5 is    2
1.5 3 2.25 3 0.75f x         which is not very close to 

0 
 
We conclude that the point of tangency is  (–1.5, –0.75). 
 
Then we write the equation of the tangent line at the point of tangency which is  (–1.5, –0.75). 
 
For this purpose we first find the derivative at the point of tangency 
 
 
 
   

2 3

' 2

' 1.5 2 1.5 3

f x x

f x x

f

 



      

i.e., the slope of the tangent line is m = –3  
 
To find the tangent line we use the equation y mx b 

  
The point of tangency was  (–1.5, –0.75) so

  
 0.75 3 1.5 5.25b b        

 
 

So the tangent line equation is y = –3x – 5.25 

 

Next we find the point at which the tangent line crosses the x-axis 
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So we equate the tangent line equation to zero, i.e., 0 = –3x – 5.25→  x = –1.75 

 

We choose this point of x = –1.75 as the new approximate of the root. 

 

The question: How close is this approximation? 

 
To answer this, find the value of the function y at this point of approximation, i.e., at x=–1.75. The 
closer the function is to 0, the more accurate our approximate is. 
 
If the function equals exactly 0, then the root is exact. 
 
For x = –1.75,  f(x) = x2–3 becomes f(–1.75) = (–1.75)2–3 =.0625 
 
Not too far from 0 but also not very close to 0.

  

Now with this new approximate root of  –1.75 we repeat the above steps, i.e., 

 

The corresponding y for x2 = –1.75 is    2
1.75 3 3.0625 3 0.0625f x        which is not very 

close to 0 
 
We conclude that the point of tangency is  (–1.75,0.0625). 
 
Then we write the equation of the tangent line at the point of tangency which is                   
(– 1.75,0.0625). 
 
For this purpose we first find the derivative at the point of tangency 
 
 
 
 

2 3

' 2

' 1.75 2 1.75 3.5

f x x

f x x

f

 



     

i.e., the slope of the tangent line is m = –3.5  
 
To find the tangent line we use the equation y mx b 

  
The point of tangency was  (–1.75,0.0625) so

  
 0.0625 3.5 1.75 6.0625b b       

 
So the tangent line equation is y = –3.5x –6.0625 

 

Next we find the point at which the tangent line crosses the x-axis 
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So we equate the tangent line equation to zero, i.e., 0 = –3.5x – 6.0625 →  x = –1.732143 

 

We choose this point of x = –1.732143 as the third approximate of the root. 

 

The question: How close is this approximation? 

 
To answer this, find the value of the function y at this point of approximation, i.e., at                x = –
1.732143. The closer the function is to 0, the more accurate our approximate is. 
 
If the function equals exactly 0, then the root is exact. 
 
For x = –1.732143,  f(x) = x2–3 becomes f(–1.732143) = (–1.732143)2–3 =0.000319 
 
Not too far from 0 so –1.732143 can be taken as the root.  
 
But if the accuracy is not satisfactory, we can do one or more extra approximations.  
 

 
 
RESULT: By using Newton’s Method Roots of  f x x2= - 3  are found to be 1.732143 and       

–1.732143 
 
 
2.  Interpolation by Newton’s divided differences. 
 
In many situations, the function y = f (x) may not be known but we may have several data only at 
discrete points (x0 , y0), (x1 , y1), (x2 , y2), ....., (xn-1 , yn-1), (xn , yn). 
 
Question: How can we find the value of the function, i.e. y at other values of x? 
 
Using the known n+1 discrete data points, we can plot a continuous function f (x).  
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From this plot we can find the value of y at any x . This is known as interpolation. 
 
If x at which y is to be found is outside the range of x for which the data is given, then it is known as 
extrapolation. 
 
Question: How is  f (x) chosen? 
 
Polynomial is a common choice for interpolation since compared to trigonometric and exponential 
series, polynomials are easily evaluated, differentiated and integrated. 
 
In polynomial interpolation, finding a polynomial of order n that passes through the n +1 points is 
needed. 
 
One of the methods of interpolation is known as Newton’s divided difference polynomial method 
(other methods are direct method and the Lagrangian interpolation method).  
 
Newton’s Divided Difference Polynomial Method 
 
Linear Interpolation (First order polynomial interpolation by Newton’s divided difference 
polynomial method) 
 
(x0 , y0) and (x1 , y1) are given.  
 
Function is y = f (x)  →  y0 = f (x0) ,  y1 = f (x1)   
 
Fit a linear interpolant f1 (x) passing through the data which is linear.  
 

 
 

The equation is:   0 0

1 0 1 0

y y x x

y y x x

 


 
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  0
1 0 0

1 0

    
x x

y y y y
x x


   


  

       0
1 0 0

1 0

x x
f x f x f x f x

x x


     

 
 

Example: For a function, the following data is given. By using Linear Interpolation (First order

 

polynomial interpolation by Newton’s divided difference polynomial method) find y at x = 16. 
 

 

 
x y 
0 0 
10 227.04 
15 362.78 
20  517.35 

22.5 602.97 
30 901.67 

 
Two data points that are closest to x = 16 are chosen which are x0 = 15 and x1 = 20.  

Using        0
1 0 0

1 0

x x
f x f x f x f x

x x


     

 we have  

 

    15
517.35 362.78 362.78

20 15

x
f x


  


 

 
At the required point of x = 16 
 

   16 15
517.35 362.78 362.78 393.694

20 15
f x


   


 

 
Quadratic Interpolation (Second order polynomial interpolation by Newton’s divided 
difference polynomial method) 
 
(x0 , y0) and (x1 , y1) and (x2 , y2) are given.  
 
Function is y = f (x)  →  y0 = f (x0) ,  y1 = f (x1),  y2 = f (x2)     
 
Fit a quadratic interpolant f2 (x) passing through the data which is quadratic.  
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The equation is:         2 0 1 0 2 0 1f x b b x x b x x x x     

 
When x = x0,   

 
        2 0 0 1 0 0 2 0 0 0 1 0 0 2 0f x b b x x b x x x x b b f x        

 
When x = x1,   

            2 1 0 1 1 0 2 1 0 1 1 0 1 1 0 2 1 0 1 1 0f x b b x x b x x x x b b x x f x b b x x            
 

         2 1 2 0
2 1 2 0 1 1 0 1

1 0

f x f x
f x f x b x x b

x x


    


 

When x = x2,   

 
      2 2 0 1 2 0 2 2 0 2 1f x b b x x b x x x x     

 
 

            2 1 2 0
2 2 2 0 2 0 2 2 0 2 1

1 0

f x f x
f x f x x x b x x x x

x x


     


 

Taking 
       2 2 2 1 2 1 2 0

2 1 1 0
2

2 0

f x f x f x f x

x x x x
b

x x

 


 



 

 

Inserting b0, b1 and b2, the quadratic interpolant function becomes 

 

         

       

  
2 2 2 1 2 1 2 0

2 1 2 0 2 1 1 0
2 2 0 0 0 1

1 0 2 0

f x f x f x f x
f x f x x x x x

f x f x x x x x x x
x x x x

 


  
     

 
 

 

To check: When x = x0,  f2 (x) = f2 (x0), when x = x1,  f2 (x) = f2 (x1), when x = x2 

 

         

       

    
2 2 2 1 2 1 2 0

2 1 2 0 2 1 1 0
2 2 0 0 0 1 2

1 0 2 0

f x f x f x f x
f x f x x x x x

f x f x x x x x x x f x
x x x x

 


  
      

 
 

So OK. 

Example: For a function, the following data is given. By using Quadratic Interpolation (Second order

 

polynomial interpolation by Newton’s divided difference polynomial method) find y at x = 16. 

 

 
x y 
0 0 
10 227.04 
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15 362.78 
20  517.35 

22.5 602.97 
30 901.67 

 
Three data points that are closest to x = 16 are chosen which are x0 = 10, x1 = 15 and x2 = 20.  
Using 
 

         

       

  
2 2 2 1 2 1 2 0

2 1 2 0 2 1 1 0
2 2 0 0 0 1

1 0 2 0

f x f x f x f x
f x f x x x x x

f x f x x x x x x x
x x x x

 


  
     

 
 

 
we have the quadratic interpolation equation as 
 

      2

517.35 362.78 362.78 227.04
362.78 227.04 20 15 15 10227.04 10 10 15

15 10 20 10
f x x x x

        
 

 

 
Evaluating the above quadratic interpolation equation at the required point, i.e., at x = 16, we have 
 

      2

517.35 362.78 362.78 227.04
362.78 227.04 20 15 15 1016 227.04 16 10 16 10 16 15

15 10 20 10
517.35 362.78 362.78 227.04

362.78 227.04 5 5227.04 6 6 392.1876
5 10

f

        
 

 
     

 
General Form of Newton’s Divided Difference Polynomial 
 
We have found linear and quadratic interpolants for Newton’s divided difference method. Recalling 
the quadratic polynomial interpolant formula which is  
 

      2 0 1 0 2 0 1f x b b x x b x x x x     
 

where  

 0 2 0b f x , 
   2 1 2 0

1
1 0

f x f x
b

x x





, 

       2 2 2 1 2 1 2 0

2 1 1 0
2

2 0

f x f x f x f x

x x x x
b

x x

 


 



 

 
Note that b0 , b1 and  b2 are finite divided differences.  
 
b0 , b1 and  b2 are the first, second and third finite divided differences, respectively. Denoting the first 
divided difference by    0 2 0f x f x ,
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the second divided difference by      2 1 2 0
1 0

1 0

,
f x f x

f x x
x x





, 

the third divided difference by      2 1 1 0
2 1 0

2 0

, ,
, ,

f x x f x x
f x x x

x x





 

Here  0f x ,  1 0,f x x ,  2 1 0, ,f x x x   are known as the bracketed functions of their variables enclosed 

in the square brackets. 
 
Writing the quadratic interpolation function by the bracketed functions, we have 

      
        

2 0 1 0 2 0 1

0 1 0 0 2 1 0 0 1         , , ,

f x b b x x b x x x x

f x f x x x x f x x x x x x x

     

     
 

We can generalize this equation and write the general form of the Newton’s divided difference 

polynomial for n + 1 data points 
(x0 , y0), (x1 , y1), (x2 , y2), ....., (xn-1 , yn-1), (xn , yn) as  
 

        0 1 0 0 1 1... ...n n nf x b b x x b x x x x x x        
 

where 
 0 0b f x

  1 1 0,b f x x
  2 2 1 0, ,b f x x x

 
             . 

             . 

             . 
 1 1 2 0, ,...,n n nb f x x x  

  1 0, ,...,n n nb f x x x
 

Here the definition of the mth divided difference is 

 

     1 1 1 2 0
1 0

0

, ,..., , ,...,
, ,..., m m m m

m m m
m

f x x x f x x x
b f x x x

x x
  




 


 

 

For example, for the third order polynomial where the data points are 
(x0 , y0), (x1 , y1), (x2 , y2) and (x3 , y3), the interpolation function is  
 

          
    

3 0 1 0 0 2 1 0 0 1

3 2 1 0 0 1 2

, , ,

            , , ,

f x f x f x x x x f x x x x x x x

f x x x x x x x x x x

     

   
 

 
Example: HW: For a function, the following data is given. By using third order polynomial 
interpolation by Newton’s divided difference polynomial method, find y at x = 16. 

 

 
x y 
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0 0 
10 227.04 
15 362.78 
20  517.35 

22.5 602.97 
30 901.67 

 
 
 
3. Interpolation by Trigonometric Functions. 
 
Consider periodic functions, i.e., functions that satisfy  

 

          ,f t f t T t       

 
where T is the period. Taking 2T    
 

   2f t f t    

 

 f t  can be approximated by a trigonometric polynomial, as:  

     0
1

cos sin
n

n j j
j

p t a a jt b jt


 
      

which is an nth degree polynomial with 0n na b  .  

We have    ,      0,1,2,....,2ni if t p t i n    

0 1 2 20 ... 2nt t t t        

 
We want 2 1n  points in  t  because we want 2 1n coefficients.  
 

Noting that cos sinie i    ,   np t  can be written as 

 
n

ijt
n j

j n
p t c e


   

where 0 0c a ,   0.5j j jc a ib  ,  0.5j j jc a ib   ,   1 j n          

 

To determine   jc  we find  ja  and  jb .   

Let itz e , then  
n

j
n j

j n
p t c z


   

    n
nz p t  is a polynomial of degree 2n .  
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Thus, interpolation means that  

                0,1,...,2n j jp z f t j n   

 

If  2 1n  distinct points are taken on the unit circle 1z    

Interpolation at Evenly Spaced Points  

Consider     
2 ,        0,1,2,...,
2jt j j n

n
   

Theorem: The coefficients of    j
n

ikt
n j k

k n
p t c e


    for 0,1,...,2j n  are given by  

 
2

0

1 ,     ,...,0,....
2 1

j
n

ikt
jk

j
c e f t k n n

n



  

   

 
Then the coefficients are  
 

 0 0,  ,  j j j j j ja c a c c b i c c       

Example: Construct trigonometric polynomial interpolation of degree 2 to   sin cost tf t e   on 

0,2   ,   

  sin cos
2

j jt t
jp t e           

0 1 2 3 4
2 2 30, , , , 2
2 4 2 2 2jt j j j t t t t t

n
                

i.e., At j = 0,  t0= 0,   sin(0) cos(0) 1
0 0f t e e e    ,  

       at j = 1,  t1= π/2,      sin /2 cos /2 1
1 / 2f t e e e

       

        at j = 2,  t2= π,      sin cos 1
2f t e e       

        at j = 3,  t3= 3π/2,  
3 3sin cos 12 2

3 3 2f t e e
 


      
   

     

        at j = 4,  t4= 2π,      sin 2 cos 2 1
4 2f t e e e

       
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 
2

0

1 ,      ,...,0,....
2 1

j
n

ikt
jk

j
c e f t k n n

n



  

   

 

           

4 4 sin cos
2 22

0 0

sin cos sin 3 cos 33sin 0 cos 0 sin 2 cos 2sin cos2 2 2 20 22 2

1 1
2 1 4 1

1
4 1

0.2

j
j jik jikt

jk
j j

ik ikik ik

ik

c e f t e e
n

e e e e e e e e e e

e e

 

        

   
   
   

       
       
       



 

    



 
 
 
 

 
 

    


 

 

31 1 22 2

32 12 20.2 1

ikik ik

ik ikik ik

e e e e e e e

e e e e e e

 
 

 
 

   

   

 
 
  
    
            

  

    

 

 

Using  0 0,  ,  k k k k k ka c a c c b i c c       

   1 1
0 0.2 1 1 1 1 1 0.2 3 2a e e e e    

          

32 12 2
1 1 1

32 12 2

0.2 1

                    0.2 1

i ii i

i ii i

a c c e e e e e e

e e e e e e

 
 

 
 

   




    
            
    
            

      

    

 

   
   

4 1 2 3
2 2 2

4 1 2 3

0.2 1

                      0.2 1

i i i i

i i i i

a c c e e e e e e

e e e e e e

   

   

    




 
  
 
  

      

    
 

Similarly 1 2 and b b  is found and inserting the coefficients into   

     0
1

cos sin
n

n j j
j

p t a a jt b jt


 
    , trigonometric polynomial interpolation of degree 2 is 

found. Then at any t value, e.g. at t = 0.3 π, the interpolation value can be found from  

     0
1

0.3 cos 0.3 sin 0.3
n

n j j
j

p a a j b j  


 
        
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4. Curve fitting by the Least Squares Algorithm 
 
Curve fitting is capturing the trend in the data by assigning a single function across the entire range. 
 
A straight line is described by f (x) = ax + b 
 
We want to find the coefficients ‘a’ and ‘b’ such that f (x) fits the data well 


 
Linear curve fitting (linear regression) 
 
Given a straight line   f x ax b   

 
How to choose the coefficients which best fits the line to the data? 
 
What makes a certain straight line a good fit? 

 
 
Which one of these two lines fits better? 
 
Consider the distance between the data and points on the line 
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For each straight line add the length of all the verticle lines 
 
This can express the error between data and fitted line 
 
The straight line that gives the minimum error is the best fit. 
 
Another way in determining the error can be obtained by squaring the distance.In this way: 
 
1) positive or negative error have the same value (data point is above or below the line) 
2) Weight greater errors more heavily 
 
For this purpose:  
 
Denote the data values by (x, y) and denote the points on the fitted line as (x, f (x)). 
 
Then sum the error at the data points. 

 
 
For 4 data points 
 

         2 2 2 22

1 1 2 2 3 3 4 4iError d y f x y f x y f x y f x                        

 
Since the fit is a straight line, substituting  f x ax b   

 

   
# data points #  data points

2 2

1 1
i i i i

i i

Error y f x y ax b
 

             

 
The best line is the one which has the minimum error between the line and data points. 
 
This is called the least squares method, since we minimize the square of the error. 
 
So the problem is reduced to minimizing the “Error” expression. Thus taking the derivative and 
equating the derivative to zero 
 
   

1

2 0
n

i i i
i

Error
x y ax b

a 


    

   
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   

1

2 0
n

i i
i

Error
y ax b

b 


    

   

 
To solve for a and b, we write 
 

 2

1 1 1

n n n

i i i i
i i i

a x b x x y
  

     

 

1 1

n n

i i
i i

a x bn y
 

    

 
Converting these 2 equations to matrix form 
 

 

1 1

2

1 1 1

n n

i i
i i

n n n

i i i i
i i i

n x y
b

a
x x x y

 

  

   
            
   
   

 

  
 

 

The solution is 

 

1

1 1

2

1 1 1

n n

i i
i i

n n n

i i i i
i i i

n x y
b

a
x x x y



 

  

   
              
   
   

 

  
 

For a 2x2 matrix 
 

If 
1

1 Taking the transpose 
T

Te f e f e f e g
A A A

g h g h g h f h



       
            
       

 

 

Adjugate matrix Adj h f
A

g e

 
   

, Determinant A A eh fg   , 
 

1 1Adj h fA
A

g eA eh fg
  
     

 

 

So 

1

2

1 1 1

2
2 2

1 1 11 1

1

n n n

i i i
i i i

n n nn n

i i ii i
i i ii i

n x x x

x x x nn x x



  

   

   
   

   
                 

  

   
 

 

So using 

   

1

2

1 1 1 1 1

2
2 2

1 1 1 1 11 1

1

n n n n n

i i i i i
i i i i i

n n n n nn n

i i i i i i ii i
i i i i ii i

n x y x x y
b

a
x x x y x n x yn x x



    

     

       
                                                  

    

     
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Thus    

 

 

1 1 1

2

2

1 1

2

1 1 1 1

2

2

1 1

n n n

i i i i
i i i

n n

i i
i i

n n n n

i i i i i
i i i i

n n

i i
i i

x y n x y

a

n x x

x y x x y

b

n x x

  

 

   

 

     
  

  
  
   

      
            

  
  
   

  

 

   

 

 

 
Example: If the data is  
 

i 1 2 3 4 5 6 

x 0 0.5  1 1.5 2 2.5 

y 0  1.5  3 4.5  6 7.5 
 

 78.75
3,    0 / 26.25 0 3 0 3

26.25
a b f x x x          is the curve fitted by least squares. 

 
To find the error  

   

           

6 6
2 2

1 1

2 2 2 2 2 2

3

0 3 0 1.5 3 0.5 3 3 1 4.5 3 1.5 6 3 2 7.5 3 2.5

0 0 0 0 0 0 0

i i i i
i i

Error y ax b y x
 

          

                 

      

 
 

 
This curve fits the data exactly, i.e., the error is zero.  
Usually this is not the case. More commonly, we have noisy data that does not exactly fit a straight 
line. 
      
HW-4: Given the data as  
 
x = [0  0.5   1   1.5   2   2.5],  y = [-0.4326   -0.1656   3.1253   4.7877   4.8535   8.6909] 
 
Find the curve fitted by a straight line by using least squares. Find the error. 
 
Curve fitting by higher order polynomials 
 
We worked on the linear curve fit by choosing a straight line  f (x) = ax + b 
This is just one kind of function. There are an infinite number function forms we can choose. 
 
Polynomial Curve Fitting 
 
Polynomial of order j 
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  2 3
0 1 2 3 0

1

...
j

j k
j k

k

f x a a x a x a x a x a a x


         

 
Question: How can we find the coefficients that best fits the curve to the data? 
 
We can say that the curve that gives minimum error between the data and the fitted curve is the best 
fit. 
 
Let’s have two curve fits for the given data set 

 
To find the error for these two different polynomials, 
 
First for the first polynomial, we add the vertical lengths between the data values and the values of 
the first polynomial fit. 
 
Then for the second polynomial, we add the vertical lengths between the data values and the values 
of the second polynomial fit.   
Finally choose the curve with minimum total error as the best fit. 
 
Polynomial Curve Fitting by Least Squares Approach 
 

 
# data points

2

1
i i

i

Error y f x


     

# data points = n.  Substituting  f x , we have 

2

0
1 1

jn
k

i k
i k

Error y a a x
 

  
    

  
   

 
To find the best fit, find the coefficients of the polynomial 0a  and   for  1,2,...ka k j  so that “Error” 

is minimized. 
 
Thus, taking the derivatives and equating to zero, we have 
 

 
0

1 10

2 0
jn

k
i k

i k

Error
y a a x

a  

   
         

   

 

 
0

1 11

2 0
jn

k
i k

i k

Error
y a a x x

a  

   
         

   
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  2
0

1 12

2 0
jn

k
i k

i k

Error
y a a x x

a  

   
         

   

 
                          . 
                          . 
 

 
0

1 1

2 0
jn

k j
i k

i kj

Error
y a a x x

a  

   
         

   

 
Rewriting in matrix form   
 

 
 
Solve for the coefficients of the polynomial 0a  and   for  1,2,...ka k j  for minimum “Error”. 

5. Series Representation of Functions (Fourier Series) 
 
Periodic Functions, Trigonometric Series 
 
A function  f x is called periodic if it is defined for all real x  and if there is some positive number 

p  such that 
 

   f x p f x   

 
p  is called the period of  f x .  

 
Graph of a periodic function is drawn by periodically repeating in any interval of length  p . 
 

 
 
                       Periodic function 
 
Examples of periodic functions:  
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1. Sine and cosine functions 
2. constantf c  . It satisfies     f x p f x   for every positive p  

 
Examples of non-periodic functions: 2,  , ,  ln xx x e x  
 

From               2 = =  f x p f x f x p f x p p f x p f x          etc., thus for any integer  

n  
 

   f x np f x    for all x .  

 
So 2 ,  3 ,  4p p p  are also periods of  f x . 

 
Furthermore, if   f x  and  g x  have period p , then      h x af x bg x   (with ,  a b  constants) 

also has the period p . 
 
Representation of various functions of period  2p   in terms of simple functions  
 
1,  cos ,  sin ,  cos 2 ,  sin 2 ,  .......,  cos ,  sin ,  .....x x x x nx nx      which have the period 2 . 
 

          
 
 

            
 
 
The series to be formed in this manner will be 
 

0 1 1 2 2cos sin cos 2 sin 2  .......a a x b x a x b x      
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where 0 1 2 1 2,  ,  ,  ........, ,  ,  ......  a a a b b  are real constants.  

 
This is called trigonometric series,  na  and nb  are the coefficients of the series.  

 
This series can be written as 
 

 0
1

cos sinn n
n

a a nx b nx




   

 
Each term of the above series has period 2 . So, if the above series converges, its sum will be a 
function of period 2 .  
 
Fourier Series   
 
Euler formulas for the Fourier Coefficients 
 
Let  f x  is a periodic function with period 2  which can be represented by the trigonometric 

series 
 

   0
1

cos sinn n
n

f x a a nx b nx




    

Here we assume that this series converges and  f x  is its sum. 

 
Problem: Given such an  f x . Determine the coefficients na  and nb  of the corresponding series. 

 
To determine 0a , integrate both sides of the series from   to   

 

   0
1

 cos sin  n n
n

f x dx a a nx b nx dx
 

 



 

     
           

 
 

  0
1

  cos  sin   n n
n

f x dx a dx a nx dx b nx dx
   

   



   

 
   

 
                

 
  

  0 2 0 0f x dx a







                          0

1
 

2
a f x dx



 

   

 
To determine na , multiply the series by  cos mx  (m being any fixed positive integer), and integrate 

both sides of the series from   to   
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   0
1

 cos  cos sin  cos  n n
n

f x mx dx a a nx b nx mx dx
 

 



 

     
           

 
 

   0
1

  cos  cos  cos cos  sin cos     n n
n

f x mx dx a mx dx a nx mx dx b nx mx dx
   

   



   

 
  
 

      Eq.1

     
Using 
 

   
 when  when 

0, otherwise 0, otherwise
0  

1
2

1cos cos  cos  cos  
2 { {

n m n m
n mnx mx dx x dx n m x dx

  

  

 

  

 
      

 
and 
 

    0 0 0
1
2

1sin cos  sin  sin  
2

n mnx mx dx x dx n m x dx
  

    

         ,      Eq.1  

becomes 

 
 when 

0, otherwise
. 0 0 cos  0 0 {n m

n m
f x mx dx a a











      

 
Replacing  m  with  n 
  

  cos  nf x nx dx a







                        1
 cos  na f x nx dx



 

   

 
In a similar manner, nb  can be found as 

 

 1
 sin  nb f x nx dx



 

   

 
In summary 
 

   0
1

cos sinn n
n

f x a a nx b nx




     is called the Fourier Series with Fourier Coefficients of 

 

 0

1
 

2
a f x dx



 

  ,    1
 cos  na f x nx dx



 

  ,    1
 sin  nb f x nx dx



 

   
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 Example 
 
Find the Fourier coefficients of the periodic square wave  
 

 
      if        0  

        if        0    {
k x

k x
f x





   

 
     and     2f x f x   

               

Solution:   0

1
 0

2
a f x dx



 

  ,   

 
 

0

0

0
0

1 1

1
                                            0

 cos   cos   cos  

sin sin

n

k k
n n

a f x nx dx k nx dx k nx dx

nx nx

 

 




 



 



 
  

  
    

  

 

  
 

 

 

0

0

0
0

1 1

1
                                            

                                          cos0 cos cos cos

 sin   sin   sin  

cos cos

n

k k
n n

k
n n

n

b f x nx dx k nx dx k nx dx

nx nx

 

 




 



 


 



 
  

  
 
  

    

  

 

  

 
4

2
0 1 cos

       for odd   

 0       for even {
k

nk
n

n

n

n



    

 
Thus the Fourier series can be represented by 
 

  4 1 1
sin sin 3 sin 5 ......

3 5

k
x x xf x


     
 

 

 

Partial sums are:    1

4
sin

k
S x


 ,    2

4 1
sin sin 3

3

k
S x x


   
 

,     3

4 1 1
sin sin 3 sin 5

3 5

k
S x x x


    
 

 

 

1 2 3,  ,  and S S S  are plotted below.  
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It is observed that as more terms are included in the sum Fourier series approaches the original 
periodic square wave   f x . 

Orthogonality 
 
We have a system formed by functions of 

 
1,  cos ,  sin ,  cos 2 ,  sin 2 ,  .......,  cos ,  sin ,  .....x x x x nx nx  
 
This system is said to be orthogonal on the interval x     if the integral of the product of any 
two different of these functions over that interval is zero.i.e., for any integers m and n ≠ m we have 
 

cos  cos  0   for   mx nx dx m n



       and      sin  sin  0   for   mx nx dx m n




   

 
and for any integer m and n  (including m = n) we have 
 

cos  sin  0mx nx dx



  

 
Functions of Any Period p = 2L 
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Up to here period was taken as 2 . However, in many applications, periodic functions have periods 
other than 2 . 
 

We make a change of scale by setting           
x L

x
L



   .   Then x L   corresponds to 

   . Thus    gf x   has period 2 .  

 
Using    instead of x ,  this new function  g  , having period 2 , has the Fourier series 

 

   0
1

cos sinn n
n

g a a n b n  




     with coefficients 

 0

1
 

2
a g d





 
 

  ,    1
 cos  na g n d




  



  ,    1
 sin  nb g n d




  



   

 

Transforming the above Fourier series by applying 
x

L

  , it is found that if a function  f x  has 

period 2p L , then it is Fourier series is expressed as.  
 

  0
1

cos sinn n
n

n n
f x a a x b x

L L

 



    
 

   with Fourier Coefficients of 

 

 0

1
 

2

L

L

a f x dx
L 

  ,    1
 cos  

L

n
LL L

n x
a f x dx





  ,    1
 sin  

L

n
LL L

n x
b f x dx





   

 
 Example 
 
Find the Fourier series of periodic square wave given by  
 

 
0    if        2    1 

   if             1    1
0    if                1    2

{ x
f x k x

x

   
   

 
           

 
 
Solution 
 

2 4             2p L L    , 
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   
2 1

0

2 1

1 1 1
   

2 4 4 2

L

L

k
a f x dx f x dx k dx

L   

      ,   

   
2 1

2 1

1 1 1 2

2 2 2 2 2
 cos   cos   cos  sin

L

n
L

k

L L n

n x n x n x n
a f x dx f x dx k dx


   

  

      ,   

   
2 1

2 1

1 1 1
0

2 2 2 2
 sin   sin   sin  

L

n
LL L

n x n x n x
b f x dx f x dx k dx

  

  

       

 
The Fourier series becomes 
 

  0
1

2 1 3 1 5
cos sin cos cos cos .. ..

2 2 3 2 5 2n n
n

n n k k
f x a a x b x x x x

L L

    






                                
  

 
Even and Odd Functions 
 
A function  y g x  is even if    g x g x     for all x , e.g., cosnx . 

A function  y h x   is odd  if    h x h x     for all x , e.g., sin nx . 

  
 

If  g x  is an even function, then    
0

2  
L L

L

g x dx g x dx


   

If  h x  is an odd function, then   0 
L

L

h x dx


  

If  g x  is even and  h x  is odd, then the product      Q x g x h x  is odd since 

 

                    Q x g x h x g x h x Q x Q x Q x              , i.e.,  Q x  is odd 

Using the above result, if  f x  is even, then  

 

the integrand of  1
 sin  

L

n
LL L

n x
b f x dx





  ,   i.e.,  sin f x
L

n x
 is odd       0nb   

 
Similarly, if  f x  is odd, then  

 

the integrand of  1
 cos  

L

n
LL L

n x
a f x dx





  ,   i.e.,  cos f x
L

n x
 is odd       0na   
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Theorem:  Fourier series of even and odd functions 
 
Fourier series of an even function of period  2L   is a “Fourier cosine series”  
 

  0
1

cosn
n

n
f x a a x

L





   with coefficients  0

0

1
 

L

a f x dx
L

  ,    
0

2
 cos  

L

n L L

n x
a f x dx


  ,    

 
Similarly, Fourier series of an odd function of period  2L   is a “Fourier sine series”  
 

 
1

sinn
n

n
f x b x

L





     with coefficients    
0

2
 sin  

L

n L L

n x
b f x dx


   

 
Theorem: 
 
- Fourier coefficients of the sum function      1 2sf x f x f x   are the sums of the corresponding 

Fourier coefficients of  1f x  and  2f x . 

 
- Fourier coefficients of the function     cf x c f x  are c  times the corresponding Fourier 

coefficients of  f x . 

 
 Example: Find the Fourier series of 
 

   sf x k f x    where   
      if        0  

        if        0    {
k x

k x
f x





   

 
   and     2f x f x   

 

               
Using the result for  f x  found in a previous example and the above theorem for the sum 

 

  4 1 1
sin sin 3 sin 5 ......

3 5c

k
k x x xf x


      
 

 

6. Solution of Differential Equations; Euler’s Method 

Many differential equations do not have algebraic solutions so we solve them numerically. 

General Initial Value Problem 

Differential equation to be solved is: 

 ,
dy

f x y
dx

  and initial value  y a  is known. 
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e.g.  
210

,    0 0
2

dy x y
y

dx


   

Euler's Method assumes that the solution is written in the form of Taylor’s Series, i.e., 

           2 3 4 v'' '''
' ...

2! 3! 4!

ih y h y h y
y y hy

x x x
x h x x       

In Euler’s Method, only the first two terms are taken, i.e., 

           ' ,
dy

y y hy y h y hf x y
dx

x h x x x x       

Lets assume that we have a known value of y as y0 when x=x0, i.e., the initial value is  0 0,x y .  

Let’s call 1y  as the value of y , one h step to the right of the current value. 

 1 0 0 0,y y hf x y   

where 0y  is the current value, h is the interval between steps, 1y  is the next estimated solution value, 

 0 0,f x y  is the value of the derivative at the starting point  0 0,x y . 

Next value: Making use of y1, we find the next value y2 as 

 2 1 1 1,y y hf x y   

where 1y  is the current value, h is the interval between steps, 2y  is the next estimated solution value, 

1 0x x h  ,  1 1,f x y  is the value of the derivative at the current point  1 1,x y . 

This process is continued for as many steps as required. 

What is the meaning of this solution?   2 1 1 1,y y hf x y   

The RHS means:  

Start at the known y value 

Then move one step h units to the right in the direction of the slope at that point, which is 

 ,
dy

f x y
dx

  

A good approximation to the curve’s y point will be arrived at that new point.  

This is done for each sub-point, h apart, from the starting value x=a to the end value x=b.  
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Example for Euler’s Method 

Initial value problem is 
lndy y y

dx x
  and  2y e  

Solution: Step 1: Start at the point    0 0, 2,x y e  and use step size h=0.1 and use 10 steps, i.e., the 

solution of the differential equation will be approximated from x=2 to x=3.  

Calculating the value of the derivative  ,
dy

f x y
dx

  at the initial point 0 02,x y e   

 ln ln
2, 1.3591409

2 2

dy y y e e e
f e

dx x
     , i.e., slope of the line from x=2 to x=2.1 is  

approximately 1.3591409  

Step 2: Next point is x+h=2+0.1=2.1 

Substituting in the Euler Method’s formula      ,y y hf x yx h x   

         1 0 0 0 0 1 0 0 0 0, ,y y x h y hf x y y y x h y hf x yx          

 1 2 0.1 0.1 2.8540959
2

e
y y e      

i.e., the approximate value of the solution at x=2.1 is 2.8540959 . 
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Now, we find the new slope at 1 12.1, 2.8540959x y    

   2.8540959ln 2.8540959ln
2.1,2.8540959 1.4254536

2.1

dy y y
f

dx x
     

i.e., slope of the line from x=2.1 to x=2.2 is approximately 1.4254536  

Step 3:  We find the solution value when x=2.2. 

           
 

 

2 1 1 1 1 2 1 1 1 12.2 , ,

2.8540959 0.1 2.1,2.8540959

2.8540959ln 2.8540959
2.8540959 0.1 2.8540959 0.1 1.4254536 2.99664126

2.1

y y x h y y hf x y y y x h y hf x y

f

x         

  

     

 

 

The slope at this new point (x2=2.2, y2=2.99664126) is  

   2.99664126ln 2.99664126ln
2.2,2.99664126 1.49490457

2.2

dy y y
f

dx x
     

i.e., slope of the line from x=2.2 to x=2.3 is approximately 1.49490457  

Continuing with Steps 4, 5, ... , 10, we find 



 32

 

 

To check how close is the Euler’s Method solution to the exact solution? 

The same initial value problem  
lndy y y

dx x
  and  2y e   can be solved algebraically, e.g. by 

Separation of Variables and the exact solution is 0.5xy e .  

To compare the Euler’s Method solution with the exact solution 

 

At x=3, the exact solution is y=4.4816890703 and Euler’s Method solution is y=4.4180722576 
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i.e., Error=(4.4816890703-4.4180722576)/ 4.4816890703x100=1.42 % 

Thus, the two solutions are very close.  

HW-6 

Solve   sin xdy
x y e

dx
    and  0 4y   from  x=0 to x=0.2 with steps h=0.1 

7. The Runge Kutta 4th Degree Method 

Euler's Method gives reasonably accurate result but it is not very efficient. The Runge-Kutta 4th 
Degree Method produces a better result in fewer steps. 

     1 2 3 4

1
2 2

6
y x h y x F F F F       

where 

 1 ,F hf x y ,  1
2 ,

2 2

h F
F hf x y

    
 

, 2
3 ,

2 2

h F
F hf x y

    
 

,   4 3,F hf x h y F     

Example 

Using Runge-Kutta Method of Order 4, solve 
25
x y

dy x y

dx e 


  with y(0)=1 by using step size of h=0.1 

for 0≤x≤1. 

Step 1: Start with x=0 and y=1 and then find the F values. 

   2

1 0 1

5 0 1
, 0.1 0.03678794411F hf x y

e 


     

 2

1
2 0.05+0.98160602794

5 0.05 0.981606027940.1 0.03678794411
, 0.1 0 ,1 0.1

2 2 2 2 e

0.03454223937

h F
F hf x y f

               
      

 

  

 2

2
3 0.05 0.98272888031

5 0.05 0.982728880310.1 0.03454223937
, 0.1 0 ,1 0.1

2 2 2 2

0.03454345267

h F
F hf x y f

e 

               
      

 

 

     2

4 3 0.1 0.96545654732

5 0.1 0.96545654732
, 0.1 0 0.1,1 0.03454345267 0.1

0.03154393258

F hf x h y F f
e 

 
        

  
 
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Step 2:  Substitute 1 2 3 4, , ,F F F F  into the Runge-Kutta RK4 formula 

     

   

 

1 2 3 4

1
2 2

6
1

0 0.03678794411 2 0.03454223937 2 0.03454345267 0.03154393258
6

1
1 0.03678794411 2 0.03454223937 2 0.03454345267 0.03154393258

6
0.9655827899

y x h y x F F F F

y

     

       

       



 

Using this new y value of 0.9655827899 , new 1 2 3 4, , ,F F F F  values are found at x=0.01+0.01=0.02 

and substituted into the Runge-Kutta 4 formula. This process is continued and the following table is 
found  

 

 

Extending the result up to x=10 
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HW-7 

Using Runge-Kutta Method of Order 4, solve  sin
dy

x y xy
dx

   with y(0)=5 by using step size of 

h=0.2 for 0≤x≤2. 

8. The Method of Finite Differences (FD). 

FD methods are used to solve differential equations numerically. The solution is obtained by 
approximating the differential equation with difference equation. Derivatives are approximated by 
the differences.  

Derivation using Taylor’s polynomial: 

             
2 3 ( )

0 0 0 0
0 0 0

' '' '''
.....

1! 2! 3! !

n n

n

hf h f h f h f
f f R x

n

x x x x
x h x       , 

 nR x  is the remainder term which gives the difference between the original function and the Taylor 

polynomial of degree n. 

Making an approximation with the first derivative 

             0
0 0 1 0 0 0 1 0

'
'

1!

hf
f f R x f hf R x

x
x h x x x        

Dividing by h 

       0 0 1 0
0'

f f R x
f

h h h

x h x
x  


 

Solving for  0'f x  

       0 0 1 0
0'

f f R x
f

h h

x h x
x


 


 

Assuming that  1 0R x  is sufficiently small, the approximation of the first derivative becomes 

     0 0
0'

f f
f

h

x h x
x





 

Error=Approximate solution – exact solution. 

Two sources of error: Round-off error which is due to computer rounding of decimal quantities. 

Truncation error which is the difference between the exact solution of the finite difference equation 
and the quantity with no round-off. 
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In order to use finite difference method for approximation to the solution, first the problem’s domain 
is discretized so divide the domain into a uniform grid 

 

 Local truncation error = ' 'i if x f  

 ' if x  is the exact value and 'if  is the numerical approximation. 

To analyze the local truncation error, the remainder term of a Taylor polynomial is used.  

Lagrange form of the remainder from the Taylor polynomial for  0f x h  is 

 
   
    

1
1

1 0 0 0   where   
1 !

n
nf

R x h h x x h
n





    


 

 

From this, dominant term of the local truncation error is found. 

e.g.  using    0if x f x ih    

       0 0
0

''
'

2!

f f f
f ih

ih

x ih x
x


 


 

Using the above expression, the dominant term of the local truncation error can be found.  

LHS is the approximation from the finite difference method 

RHS is the exact quantity plus a remainder where the remainder is the local truncation error. 

Thus, it can be written as  

       0 0
0'

f f
f O h

ih

x ih x
x


 


 

where  O h  is the order. 

The local truncation error is proportional to the step sizes.  

The quality and duration of simulated FDM solution depends on the discretization equation selection 
and the step sizes (time and space steps). 
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The data quality and simulation duration increase significantly with smaller step size 

 

Example: The ordinary differential equation 

   ' 2 1u x u x   

Using the finite difference quotient in Euler method to solve this equation  

           ' 2 1
u x h u x u x h u x

u x u x
h h

   
     

           2 2 1u x h u x hu x h u x h u x h u x            

which is the finite-difference equation, the solution of which will give an approximate solution to the 
differential equation. 

Example  

   0.3 1000u x h u x   ,     0 0 1000u x y   

which is a linear finite difference equation  

   0 1 0 00.3 1000 0.3 1000u x h y u x y       

   2 1 1 00.3 1000 0.3 1000 0.3 0.3 1000 1000y u x y y        

   
     

3 2 2 0

2 3

0

0.3 1000 0.3 1000 0.3 0.3 0.3 1000 1000 1000

    1000 0.3(1000) 0.3 1000 0.3

y u x y y

y

         

   
 

In general,  

       2 3 1

01000 1 0.3 0.3 0.3 ... 0.3 0.3
n n

ny y
         

HW-8 

Find  yn if     2 2u x h u x   ,     0 0 2u x y   

9. The Finite Element Method (FEM) (Ref: Chapter 2 of the course notes are prepared by 

Dr. Cüneyt Sert, METU, http://www.me.metu.edu.tr/people/cuneyt) 

 Does not seek a global solution 
 
 Divides the problem domain into elements of simple shapes 
 
 Works with simple polynomial type approximate solutions over each element  
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 Weight function is selected 
 

 
                                                                Simple, low-order polynomial 
                                                                                        solution over each element 

 
                                                                                   Simple shaped elements 
 

Example:  Solve     
2

2
2

,     0 1,     0 0,    1 0
d u

u x x u u
dx

          by using FEM 

 
Exact solution is  
 

   
 

2sin 2sin 1
2

sin 1exact
x x

u x
 

    

 
Exact solution 
 

 
 
5 node (NN = 5) and 4 element (NE = 4) mesh (grid) will be used as shown below:  
                                                                           

   
 

This is a mesh of linear elements (elements that are defined by 2 nodes).  

This mesh is uniform, i.e. element length 0.25h   is constant.  
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Using linear elements, a piecewise linear solution is obtained.  
 

 
 

Solution is linear in every linear piecewise segment and continuous at element interfaces, however, 
1st derivative of the solution is not continuous.  

'ju s  are the nodal unknown values which will be calculated.  

1u  and 5u  are the element boundary conditions which are known.   

The solution is  
1

NN
h

j j
j

u u 


  

where  j x  are the approximate solutions, NN is the number of nodes and 'ju s  are the nodal 

unknowns.  
 
To have a piecewise linear hu  each   j x  should be linear.  

1

NN
h

j j
j

u u 


   should provide nodal unknown values at the nodes which is satisfied if the Kronecker-

Delta property  
 

  1           if  
 ,     , 1,2,...,   

0           if  j i

i j
x i j NN

i j



  

   holds.  

 
Below approximation functions will be OK  
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These are Lagrange type approximation functions that make sure that the solution is continuous 
across elements, but not its first derivative.  

They fulfill the Kronecker-Delta property.  

They are nonzero only over at most two elements.     
                                                                                                  Each  j x  by ju  

 
 
                                                             

1

NN
h

j j
j

u u 


  

 
 
Using u  instead of hu  
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2
2

2

d u
R u x

dx
     

 
2 21 1 12 2

2 20 0 0
 0  0  0

d u d u
wR dx w u x dx w wu wx dx

dx dx

   
             

   
    

 

Applying integration by parts, i.e., 
b

a

bdv du
u uv v

adx dx
      to the first term 

21

20

d u
w dx

dx
  

where 
2

2
,         ,    v

dv d u du dw du
u w

dx dx dx dx dx
      

 

The first term becomes 
21 1

20 0

1

0

d u du dw du
w dx w dx

dx dx dx dx

 
    

 
   

 
Thus the equation becomes 
 

21 12 2
20 0

1
  0

0

d u dw du du
w wu wx dx wu wx dx w

dx dx dx dx

             
  

   

 
Writing this equation NN times with different w’s where ,     1,2,...i iw i NN   

 
1 21

1 1 1 1 10
1  Eq. with  0

1 0
st d du du du

w u x dx
dx dx dx dx

            
   

1 22
2 2 2 2 20

2  Eq. with  0
1 0

nd d du du du
w u x dx

dx dx dx dx

            
   

1 23
3 3 3 3 30

3  Eq. with  0
1 0

rd d du du du
w u x dx

dx dx dx dx

            
   

1 24
4 4 4 4 40

4  Eq. with  0
1 0

th d du du du
w u x dx

dx dx dx dx

            
   

1 25
5 5 5 5 50

5  Eq. with  0
1 0

th d du du du
w u x dx

dx dx dx dx

            
   

Noting that     

               1 2 2 3 3 4 4 5 0
1 1 0 1 0 1 0 0

x x x x x x x x
x x

              
 

 

and        1 5 1
0 1

x x
x x

  
 

  and noting that the integrals are non zero only over certain 

elements 

e.g. integral of the 3rd Eq.  is   
1 23

3 3 30
 

d du
I u x dx

dx dx

      
   non zero only over e=2 and e=3 

because 3  is non zero only over e=2 and e=3. 
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3I  can be found as   3 2 3 4

97 47 97 25
   

24 6 24 384
I u u u      

Evaluating the other integrals we find 
 

 
i.e., this system has 5 equations for 5 unknowns.  
 

1u  and 5u  are known but 1Q  and 5Q  are unknown.  

 

11 12 13 14 15 1 1 1

21 22 23 24 25 2 2 2

31 32 33 34 35 3 3 3

41 42 43 44 44 4 4 4

51 52 53 54 55 5 5 5

Q

Q

Q

Q

Q

K K K K K u F

K K K K K u F

K K K K K u F

K K K K K u F

K K K K K u F

       
       
       
        
       
       
              

 

 
We want to solve 'u s . For this, we apply reduction to the NN x NN system and drop the 1st and 5th 

equations, because u1 and u5 are known.  
 
Reduced system is 3 x 3 
 

22 23 24 2 2 21 1 25 5 2

32 33 34 3 3 31 1 35 5 3

42 43 44 4 4 41 1 45 5 4

Q

Q

Q

K K K u F K u K u

K K K u F K u K u

K K K u F K u K u

        
                 
               

 

 
Since 1 5 0u u   
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2 2

3 3

4 4

47 97 7
0 0 0

6 24 384 0 0.0232
97 47 97 25

0 0 0 0.0405
24 6 24 384

0 0.0392
97 47 55

0 0 0
24 6 384

u u

u u

u u

         
          

                             
                 

      
      

 

where exact solution is 
2

3

4

0.0234

0.0408

exact 0.0394

u

u

u

   
       
      

 

 

 
 

HW-9: Solve     
2

2
2 ,      0 1,     0 0,    1 0

d u
u x x u u

dx
          by using FEM 

 
10. Solution of Integral Equations; Method of Moments. 
 
Method of Moments (MoM) transforms integro-differential equations into matrix systems of linear 
equations which can be solved numerically. 
 
Consider the inhomogeneous equation 
 

    0L u k L u k     
3  
where L is a linear integro-differential operator, u is an unknown function (to be solved) and k is a 
known function (excitation).  
 
For example, 

(a) consider the integral equation for a line charge density 
 
 0

0

' '

4 , '

x dx
V

r x x




    where 

   0
0

'
, ,

4 , '

dx
u x k V L

r x x



     

(b) 
 2

2
2

3 2
d f x

x
dx

    where  
2

2
2

, 3 2 ,
d

u f x k x L
dx

      

 
To solve u approximate it by sum of weighted known  basis functions or expansion functions such as 
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1 1

,        1,2,...
N N

n n n
n n

u u I b n N
 

      

 
where nb  is the expansion function, nI  is its unknown complex coefficients to be found, N is the 

total number of expansion function. 
 
Since L is linear, substitution of the above equation in the integro-differential equation, we obtain 
 

1

N

n n
n

L I b k


   
 
   where the error or residual is 

1

N

n n
n

R k L I b


    
 
  

 
Replacing u  by nu  where 1,2,...n N  

 
Taking inner product with a set of mw  weighting or testing functions, making the residual R=0 

 
In the range of L →   , 0,            1,2,...,m nw L u k m M      

 
Since nI  is constant, we can write  

 

 
1

, , ,            1,2,...,
N

n m n m
n

I w L b w k m M


        where M and N  are theoretically infinite but in 

practice they are finite numbers. 
 

Inner product ,w g   which is a scalar is defined by    , ,w g g w g x w x dx        

 
, , ,bf cg w b f w c g w         ,  *, 0    if   0  and  *, 0    if   0g g g g g g           

 
where b and c are scalar and * is the complex conjugate. 
 

Writing   
1

, , ,            1,2,...,
N

n m n m
n

I w L b w k m M


        in matrix form 

 

    Z I V     

 
where 
 

   1 2 ...
T

NI I I I ,     1 2, , ... ,
T

MV k w k w k w       , 
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 

     
     
     

     

1 1 1 2 1

2 1 2 2 2

3 1 3 2 3

1 2

, , ... ,

, , ... ,

, , ... ,

. . ... .

. . ... .

. . ... .

, , ... ,

N

N

N

M M M N

w L b w L b w L b

w L b w L b w L b

w L b w L b w L b

Z

w L b w L b w L b

      
       
      
 

  
 
 
 
       

 

 
Solving for the unknown  I  

 

     1
I Z V

  

 

Example: Consider a 1-D differential equation 
 2

2
2

3 2
d f x

x
dx

    with boundary conditions 

   0 1 0f f  . Solve this equation using Galerkin’s Method of Moments (MoM).  

 
Solution:   u f x  

 

23 2k x  ,  
2

2

d
L

dx
   

 
Due to the nature of 23 2k x  ,  choose the basis function to be   n

nb x x  but the boundary 

condition  1 0f   cannot be satisfied with this basis function so better to choose  

  1,             1, 2,...,n
nb x x x n N   .  

 
Assuming 2N   which is the total number of subsections in the interval  0,1  

 
Approximation of the unknown function 
 

         2 3
1 1 2 2 1 2f x I b x I b x I x x I x x       

 
In Galerkin’s MoM, the weighting functions are 
 

  1,             1, 2,...,mw x x x m M    

 
Writing  Z  with 2M N   where 

 

          
1 1

2
11 1 1 1 1

0 0

1
, 2

3
Z w L b w x L b x dx x x dx         
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         
1 1

2
12 1 2 1 2

0 0

1
, 6

2
Z w L b w x L b x dx x x x dx         

 

          
1 1

3
21 2 1 2 1

0 0

1
, 2

2
Z w L b w x L b x dx x x dx         

 

         
1 1

3
22 2 2 2 2

0 0

4
, 6

5
Z w L b w x L b x dx x x x dx         

 
Writing  V  where 

 

      
1 1

2 2
1 1 1

0 0

3
, 3 2

5
V k w k x w x dx x x x dx          

 

      
1 1

2 3
2 2 2

0 0

11
, 3 2

12
V k w k x w x dx x x x dx          

 

So        1 1

2 2

1 1 133

3 2 105
1 4 111

2 5 312

I I
Z I V I

I I

    
       

            
       

        

 

 
The unknown function  f x  is 

 

         2 3 2 3
1 2

13 1

10 3
f x I x x I x x x x x x         

 
Which satisfies the boundary conditions of    0 1 0f f   

 

On the other hand, the analytical solution of this differential equation is   2 45 3 1

3 2 6
f x x x x    

 
Comparison of the exact solution (analytical) and the approximate solution (MoM) of this example is 
as follows: 
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HW-10: Solve the differential equation 
 2

2
2

1
d f x

x
dx

    with boundary conditions 

   0 1 0f f   by using Galerkin’s Method of Moments (MoM).  

 
11. Optimization; Convexity and Convergence. 
 
Optimization problem: Standard form 
 
Minimize f0(x) subject to fi(x) ≤ 0, i = 1, . . . ,m  and  hi(x) = 0, i = 1, . . . ,p 
 
where x is optimization variable, f0 is objective or cost function,  
 
fi(x) ≤ 0 are the inequality constraints, hi(x) = 0 are the equality constraints 
 
x is feasible if it satisfies the constraints 
 
The feasible set C is the set of all feasible points 
 
Problem is feasible if there are feasible points 
 
Problem is unconstrained if m = p = 0 
 
Optimal point: x   C  such that f (x) = f *,   optimal set: Xopt = { x   C | f (x) = f * } 
 
Example: Minimize x1 + x2     subject to   -x1 ≤ 0,  -x2 ≤ 0,    1 - x1 x2 ≤ 0 
 
Feasible set C is half-hyperboloid    
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Optimal point is x* = (1, 1) 
 
Optimal value is f * = 2 
 
Definition of a convex set: 
 
A set S is said to be convex if for each 1 2,x x S , the line segment     1 21    for    0,1x x      

belongs to S. 
 
This says that all points on a line connecting two points in the set are in the set.  
 
The intersection of a finite or infinite number of convex sets is also convex.  
 
Examples of Convex Sets 
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Convex optimization problems can be solved quickly and reliably up to very large size (hundreds of 
thousands of variables and constraints).  
 
The issue is that, unless our objective and constraints are linear, it is difficult to determine whether or 
not they were convex.  
 
Convex optimization problem 
 
In standard form  
 

 0minimize  f x   subject to   0,         1,.....,if x i m  ,    0,         1,.....,T
i ia x b i p    

 
where      0 1 ,  ,....,  mf x f x f x  are convex. 

 

Example: 1 2minimize  x x     subject to   1 20,      0x x    ,   1 21 0x x   where 1 21 x x  is 

convex. 
 
or:  1 2minimize  x x     subject to   1 20,      0x x    ,   1 2log( ) log( ) 0x x     

 
Example: A farmer has 2400 m of fencing and wants to fence off a rectangular field that borders a 
straight river. He needs no fence along the river. What are the dimensions of the field that has the 
largest area? 
 
Answer:  Maximize A = xy 
 
Constraint: 2x + y = 2400 
 
Solving the second equation for y  
 
2 2400 2400 2x y y x       
 
Substituting the result into the first equation 
 

  22400 2 2400 2A xy x x x x      

 
To find the absolute maximum value of 22400 2A x x  ,  
 
Closed Interval Method is used to find the absolute maximum and minimum values of a continuous 
function f on a closed interval [a, b] by using the below steps: 
 
1. Find the values of  f  at the critical numbers of f in [a, b] 
2. Find the values of f  at the end points of the interval. 
3. The largest of the values from Step 1 and 2 is the absolute maximum value; the smallest value of 
these values is the absolute minimum value. 
 
 

0 2400 2 0 2400 2 1200y x x x         
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On the other hand 0x   
 
Combining these two inequalities gives 0 1200x   
 
The derivative of  A x  is 

 

     2 2' 2400 2 ' 2400 ' 2 ' 2400 4A x x x x x x       

 
To find the critical numbers we solve the equation 
 
2400 4 0 600x x     
 
To find the maximum value of   A x  we evaluate it at the end points and critical number: 

 

       2
0 0, 600 2400 600 2 600 720000,  1200 0A A A       

 
The Closed Interval Method gives the maximum value as   2600 720000 mA   

 
The dimenions are 600 m, 2400 2 600 1200 mx y      = 1200 m. 

Example:  We want to construct a box whose base length is 3 times the base width.  The material 
used to build the top and bottom costs 10 TL/ m2 and the material used to build the sides costs             
6 TL/m2.  If the box must have a volume of 50 m3, find the dimensions that will minimize the cost to 
build the box. 

Answer:  

 

We want to minimize the cost of the materials subject to the constraint that the volume must be            
50 m3.  Note as well that the cost for each side is just the area of that side times the appropriate cost.   

The two functions are 

        2Minimize: 10 2 6 2 2 10 2 3 6 2 2 3 60 48C lw wh lh w w wh w h w wh               

2Constraint: 50 3 3lwh wwh w h    
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Solving the constraint for one of the variables 

2

50

3
h

w
  

Inserting into the cost 

  2 2 2 2
2

50 50 800
60 48 60 48 60 48 60

3 3
C w w wh w w w w

w w w
         

We can’t use the Closed Interval Method because the domain of C(w) is  0,  which is not a finite 

interval. Instead, we will use 
 
FIRST DERIVATIVE TEST FOR ABSOLUTE EXTREME VALUES: Suppose that c is a critical 
number of a continuous function f defined on an interval. 
 
(a) If f′(x) > 0 for all x < c and f′(x)  < 0 for all x > c, then f(c) is the absolute maximum value of f. 

(b) If f′(x) < 0 for all x < c and f′(x) > 0 for all x > c, then f(c) is the absolute minimum value of f. 

Taking the derivative 

 
3

2 2

800 120 800
' 120

w
C w w

w w


         

Since 0w  , the only critical number is found from 

  
1/3 1/33

2

120 800 800 20
' 0 1.8821

120 3

w
C w w

w

            
   

 

It can be seen that  ' 0C w   for all 
1/3

20
0

3
w     

 
 and  ' 0C w   for all 

1/3
20

3
w    

 
  

Thus, the minimum value of the cost should occur at 
1/3

20

3
w    

 
 

The dimensions are: 1.8821 mw  , 3 3 1.8821 5.6463 ml w    , 
2

50
4.7050 m

3
h

w
   

Minimum cost is 
1/3 2/3

1/3

20 20 800
60 637.60 TL

3 3 20
3

C w
           

         
 
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Convergence 

2 2 2
1 2Norm ... nx x x    x  

Types of convergence definitions: 

1.  If  *nx x  and there is 0K    such that 
2

1 * *n nx x K x x       

2.  If  *nx x  and there is 0K    such that 1 * *n nx x K x x


      where 1   

 

4.   If  *nx x   1 * *n nx x x x      where  0,1   for n sufficiently large. 

Examples: Consider the following sequences: 
 

 

 

HW-11: Determine the area of the largest rectangle that can be inscribed in a circle of radius 4. 
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12. The Steepest Descent Method. 
 
The Steepest Descent Method is an algorithm for finding the nearest local minimum of a function 
which presupposes that the gradient  of the function can be computed. The method of steepest 
descent starts at a point P0 and, as many times as needed, moves from Pi to Pi+1 by minimizing along 
the line extending from Pi in the direction of  f iP , the local downhill gradient. 
 

 
 
 
The gradient vector of a scalar function  1 2, ..., nf x x x is defined as a column vector 

1 2

...
T

n

f f f
f

x x x

   
      

c   

 

e.g. For    2 2
1 2 1 2 1 2

1 2

, 25 2 25 2
T

Tf f
f x x x x f x x

x x

  
           

 

 

At the point        2 2
1 2 1 2 1 20.6, 4 , 25 2 25 0.6 2 4 30 8

T T
x x f x x x x f          c  

 

Defining the normalized gradient vector  
T


c

c
c c

 

 

At the point 

   
1 2 2 2

30 30 0.966251 1
0.6, 4

8 8 0.257730 30 830 8
8

T
x x

     
           

       
 
 

c
c

c c
 

 
Remark: The gradient vector represents a direction of  maximum  rate of  increase for the function 
at the point of evaluation, i.e., at the point 1 20.6, 4x x   in the above example, i.e., 

 

   2 20.6, 4 25 0.6 4 25f     

 
If  x is increased in the direction c  by a step 0.5    
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    0.6 0.96625 1.083125
0.5

4 0.2577 4.12885


     
       
     

1 0x = x + c  

 
The value of the function becomes 
 

      2 2
25 1.083125 4.12885 46.3271f x = +  

 

If we move in a direction  1 0
T

 

 

    0.6 1 1.1
0.5

4 0 4


     
       
     

1 0x = x + c  

 
The value of the function becomes 
 

      2 2
25 1.1 4 46.251f x = +  

 

If we move in a direction  0 1
T

 

 

    0.6 0 0.6
0.5

4 1 4.5


     
       
     

1 0x = x + c  

 
The value of the function becomes 
 

      2 2
25 0.6 4.5 29.251f x = +  

 
The result is that moving along the gradient direction results in the maximum increase in the 
function. 
 
Remark: The gradient vector c  of  1 2, ..., nf x x x  at the point of evaluation *x   is orthogonal 

(normal) to the tangent plane for the surface  * constantf x  . For example, at the point *x  where 

1 20.6, 4x x        2 22 2
1 2 1 2, 25 25 0.6 4 25f x x x x     , the slope at the point *x  is 

 

2

1 21

slope
0.6, 4

dx

x xdx


 
  

 
Equating the differentiation of    2 2

1 2 1 2, 25f x x x x   to zero  

  2 1
1 1 2 2

1 2

25
25 2 2 0

dx x
x dx x dx

dx x
         
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At the point *x ,  
 2

1 21

25 0.6
slope 3.75

0.6, 4 4

dx

x xdx
    

 
 

 
 

The direction of the tangent line is given by 
1

3.75

 
   

t  

 

c and  t  are normal each other as     1
30 8 30 8 3.75 0

3.75
T  
     

c t  

 
Remark: The maximum rate of change of   f x  at any point *x  is the magnitude of the gradient 

vector given by  ║ c ║ T c c  
 
Steepest descent direction. Let  f x  be a differentiable function with respect to x. The direction of 

steepest descent for  f x   at any point is or  d c      d = c  

 
Example.  Use the steepest descent direction to find the minimum of   2 2

1 2 1 2, 25f x x x x   starting 

at    0 1 3
T

x   with a step size of 0.5  . The function value at the starting point is 

 
    20 2 2 2

1 225 25 1 3 34f x x    x  

 

From the analytical solution, the minimum point is at  * 0 0
T

x  and  * 0f x .  

Starting the process of iterations. 
 

   
 

0

1 2

2 25 1 50

2 3 6

T
f f

f
x x

     
               

c c  

 

 

 
0

2 2

50 0.99291

6 0.119150 6
T

   
      

   

c
c c

c c
 

 

     1 0 0 1 0.9929 0.50359
0.5 0.5

3 0.1191 2.9404

     
         

     
x x c  

 
      2 21 25 0.5035 2.9404 14.984f   x  

 
Next iteration 
 

    
 

1 2 25 0.5035 25.175

2 2.9404 5.8808

   
    

  
c  
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 

   
1

2 2

25.175 0.97381

5.8808 0.227525.175 5.8808
T

   
      

   

c
c c

c c
 

 

     2 1 1 0.50359 0.9738 0.0166
0.5 0.5

2.9404 0.2275 2.8267

     
         

     
x x c  

 
      2 22 25 0.0166 2.8267 7.997f   x  

 
Next iteration 
 

   2 20.83 0.1453

5.6534 0.9894

   
     
   

c c  

 

     3 2 2 0.166 0.1453 0.0561
0.5 0.5

2.8267 0.9894 2.332

     
         

     
x x c  

 
      2 23 25 0.0561 2.332 5.5169f    x  

 
Next iteration 
 

   3 32.805 0.5154

4.664 0.8570

    
     
   

c c  

 

     4 3 3 0.0561 0.5154 0.2016
0.5 0.5

2.332 0.857 1.9035

      
         

     
x x c  

 
      2 24 25 0.2016 1.9035 4.6394f   x  

 
Next iteration 
 

   4 410.08 0.9355

3.807 0.3533

   
     
   

c c  

 

     5 4 4 0.2016 0.9355 0.2662
0.5 0.5

1.9035 0.3533 1.7269

     
         

     
x x c  

 
      2 25 25 0.2662 1.7269 4.7537f    x  

 
Note that the function values start to oscillate, i.e., not monotonically reduce. This is caused by the 
constant step size. When the iteration approaches the minimum, a smaller step size should be used. 
Otherwise, an “overshoot” will occur which means that we move along the steepest direction more 
than needed. We must find the best step size at each iteration by conducting a one-D optimization in 
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the steepest descent direction. For example, the new point can be expressed as a function of step size 
α, i.e., 
 

     1 0 0 1 0.9929 1 0.9929

3 0.1191 3 0.1191


 


     

              
x x c  

 
      2 21 25 1 0.9929 3 0.1191f     x   which is a function of   

 

Taking the derivative of   1f x  with respect to and equating to zero 

 
  

         
1

0 02 25 1 0.9929 0.9929 2 3 0.1191 0.1191 0
df

d
 


      

x
   

 

     
   

0

2 2

25 0.9929 3 0.1191
1.0211

25 0.9929 0.1191



 


 

 

       1 0 0 0 1 0.9929 0.0139
1.0211

3 0.1191 2.8784


     
         

     
x x c  

 
      2 21 25 0.0139 2.8784 8.29f    x  

 
Thus, 8.29f   is the minimum value found at this iteration. 
 
HW-12: Using the steepest descent direction, find the minimum of   2

1 2 1 2, 3 2f x x x x   starting at 
   0 1 2

T
x   with a step size of 0.5  . Use 2 iterations. 

 
13. The Gauss-Newton Method. 
 
A nonlinear least squares problem is an unconstrained minimization problem of the form 

Minimize        2

1 2 1 2 1 2 1 2
1

, ,..., , ,..., , ,..., , ,...,
m

T

n i n n n
i

f x x x f x x x F x x x F x x x


    over 1x  and 2x  

where         1 2 1 1 2 2 1 2 1 2, ,..., , ,...,      , ,...,      ...     , ,...,
T

n n n m nF x x x f x x x f x x x f x x x   

 

Jacobian of      1 2 1 2 1 2, ,..., , ,..., , ,...,
T

n n nF x x x J x x x F x x x    
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 
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.
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f f f

x x x

   
    
   

      
 
    
    

 

 
The gradient is       f x F x F x    

 

 2 f x  is obtained by differentiating with respect to ix  

 

         2 2

1

m
T

i i
i

f x F x F x f x f x


         known as the Hessian of  f. 

 
Gauss-Newton method computes a search direction using the formula  
 

   2 f x p f x     and  replaces the Hessian with the approximation 

 

       T
F x F x p F x F x          where  p  is a vector 

 
Example: Applying Gauss-Newton method to  
 

   2

5

1 2 1
1

, ix t
i

i

f x x x e y


    with data    

 

 
 
1 2 4 5 8

3.2939 4.2699 7.1749 9.3008 20.259

T

T

t

y




 

 
Using an initial guess that is close to the solution 
 

2.50

0.25
x

 
  
 

 

 

Solution:          1 2          ...     
T

mF x f x f x f x  

 

 

2 1

2 2

2 3

2 4

2 5

1 1

1 2

1 3

1 4

1 5

x t

x t

x t

x t

x t

x e y

x e y

F x x e y

x e y

x e y

 
 

 
  
 

 
  
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Evaluating  F x  at the an initial guess 
2.50

0.25
x

 
  
 

 and  at  

 
 
1 2 4 5 8

3.2939 4.2699 7.1749 9.3008 20.259

T

T

t

y




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  

  

  

  
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0.25 4

0.25 5

0.25 8
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e
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                           
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                                   
    
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     
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     
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  

 

For Gauss-Newton 
 

       T
F x F x p F x F x     
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i.e., 
0.0381

0.0102
p

 
  
 

. The new estimate of the solution is  

 
2.50 0.0381 2.5381

0.25 0.0102 0.2602
x x p

     
         

     
 

 
The iteration is continued. 

HW-13: Apply Gauss-Newton method to     
4

1 2 1 2
1

, 2 i i
i

f x x x x t y


    with data    
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Use an initial guess 
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  
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14. Other Algorithms than Gradients such as the Genetic Algorithm. 
 
Genetic Algorithm is used to find solution to a problem called objective function. 
 
Solution generated by genetic algorithm is called a chromosome. 
 
Collection of chromosome is called population.  
 
A chromosome is composed of genes and its value can be either numerical, binary, symbols or 
characters depending on the problem to be solved. 
 
These chromosomes will undergo a process called fitness function to measure the suitability of 
solution generated by Genetic Algorithm with problem. 
 
Some chromosomes in population will mate through process called crossover thus producing new 
chromosomes named offspring which its genes composition are the combination of their parent. 
 
In a generation, a few chromosomes will also go through mutation in their gene. 
 
The number of chromosomes which will undergo crossover and mutation is controlled by crossover 
rate and mutation rate value. 
 
Chromosome in the population that will maintain for the next generation will be selected based on 
the rule that the chromosome which has higher fitness value will have greater probability of being 
selected again in the next generation. 
 
After several generations, the chromosome value will converge to a certain value which is the best 
solution for the problem.  
 
Thus, the genetic algorithm process is as follows 
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Step 1. Determine the number of chromosomes, generation, and mutation rate and crossover rate 
value 
 
Step 2. Generate chromosome-chromosome number of the population, and the initialization value of 
the genes chromosome-chromosome with a random value 
 
Step 3. Process steps 4-7 until the number of generations is met  
 
Step 4. Evaluation of fitness value of chromosomes by calculating objective function 
 
Step 5. Chromosomes selection  
 
Step 6. Crossover 
 
Step 7. Mutation 
 
Step 8. New Chromosomes (Offspring)  
 
Step 9. Solution (Best Chromosomes)  
 
The flowchart of algorithm is 
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Example:  For the equality a +2b +3c +4d = 30, Find a, b, c and d by using genetic algorithm. 
 
Formulate the objective function. The objective is minimizing the value of function f(x) where f(x)  = 
((a +2b +3c +4d) - 30). Since there are four variables in the equation, namely a, b, c and d, we can 
compose the chromosome as follows:  
 

 
 
To speed up the computation, we can restrict the values of variables a, b, c and d to integers between 
0 and 30.  
 
Step (i). Initialization  
 
For example we define the number of chromosomes in population are 6, then we generate random 
value of gene a, b, c and d for 6 chromosomes 
 
Chromosome[1] = [a;b;c;d] = [12;05;23;08], Chromosome[2] = [02;21;18;03], Chromosome[3] = 
[10;04;13;14], Chromosome[4] = [20;01;10;06], Chromosome[5] = [01;04;13;19], Chromosome[6] 
= [20;05;17;01] 
 
Step (ii). Evaluation  
 
We compute the objective function value for each chromosome produced in initialization step: 
 
F_obj[1] = 12 + 2x5 + 3x23 + 4x8 - 30 = 93 
 
F_obj[2] = 2 + 2x21 + 3x18 + 4x3 – 30 = 80  
 
F_obj[3] = 10 + 2x4 + 3x13 + 4x14 - 30 = 83  
 
F_obj[4] = 20 + 2x1 + 3x10 + 4x6 - 30 = 46  
 
F_obj[5] = 1 + 2x4 + 3x13 + 4x19 - 30 = 94  
 
F_obj[6] = 20 + 2x5 + 3x17 + 4x1 - 30 = 55  
 
Step (iii). Selection 1.  
 
The fittest chromosomes have higher probability to be selected for the next generation.  
 
To compute fitness probability we compute the fitness of each chromosome.  
 
To avoid divide by zero problem, the value of F_obj is added by 1.  
 
Fitness[1] = 1 / (1+F_obj[1]) = 1 / 94 = 0.0106  
 
Fitness[2] = 1 / (1+F_obj[2]) = 1 / 81 = 0.0123 
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Fitness[3] = 1 / (1+F_obj[3]) = 1 / 84 = 0.0119 
 
Fitness[4] = 1 / (1+F_obj[4]) = 1 / 47 = 0.0213 
 
Fitness[5] = 1 / (1+F_obj[5]) = 1 / 95 = 0.0105 
 
Fitness[6] = 1 / (1+F_obj[6]) = 1 / 56 = 0.0179 
 
Total = 0.0106 + 0.0123 + 0.0119 + 0.0213 + 0.0105 + 0.0179 = 0.0845 
 
The probability for each chromosomes is formulated by P[i] = Fitness[i] / Total 
 
P[1] = 0.0106 / 0.0845 = 0.1254 
 
P[2] = 0.0123 / 0.0845 = 0.1456 
 
P[3] = 0.0119 / 0.0845 = 0.1408 
 
P[4] = 0.0213 / 0.0845 = 0.2521 
 
P[5] = 0.0105 / 0.0845 = 0.1243 
 
P[6] = 0.0179 / 0.0845 = 0.2118 
 
From the probabilities above we see that Chromosome 4 that has the highest fitness, this 
chromosome has highest probability to be selected for next generation chromosomes.  
 
For the selection process we use roulette wheel, for that purpose we compute the cumulative 
probability values:  
 
C[1] = 0.1254 
 
C[2] = 0.1254 + 0.1456 = 0.2710 
 
C[3] = 0.1254 + 0.1456 + 0.1408 = 0.4118 
 
C[4] = 0.1254 + 0.1456 + 0.1408 + 0.2521 = 0.6639 
 
C[5] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243 = 0.7882 
 
C[6] = 0.1254 + 0.1456 + 0.1408 + 0.2521 + 0.1243 + 0.2118 = 1.0 
 
The process now is to generate random number R in the range 0-1 as follows: 
 
R[1] = 0.201, R[2] = 0.284, R[3] = 0.099, R[4] = 0.822, R[5] = 0.398, R[6] = 0.501. 
 
If random number R [1] is greater than C [1] and smaller than P [2] then select Chromosome [2] as a 
chromosome in the new population for next generation:  
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NewChromosome[1] = Chromosome[2] 
NewChromosome[2] = Chromosome[3] 
NewChromosome[3] = Chromosome[1] 
NewChromosome[4] = Chromosome[6] 
NewChromosome[5] = Chromosome[3] 
NewChromosome[6] = Chromosome[4] 
 
Chromosomes in the population thus become:  
 
Chromosome[1] = [02;21;18;03], Chromosome[2] = [10;04;13;14], Chromosome[3] = 
[12;05;23;08], Chromosome[4] = [20;05;17;01], Chromosome[5] = [10;04;13;14], Chromosome[6] 
= [20;01;10;06] 
 
Step (iv). Crossover  
 
In this example, we use one-cut point, i.e. randomly select a position in the parent chromosome then 
exchanging sub-chromosome.  
 
Parent chromosome which will mate is randomly selected and the number of mate Chromosomes is 
controlled using crossover_rate (ρc) parameters.  
 
Pseudo-code for the crossover process is as follows:  
 
begin k = 0 
while (k < ρc) 
then select Chromosome[k] as parent 
end 
k = k + 1 
end 
end 
 
Chromosome k will be selected as a parent if R [k] < Chromosome[4] Chromosome[4] >< 
Chromosome[5] Chromosome[5] >< Chromosome[1]  
 
After chromosome selection, the next process is determining the position of the crossover point. This 
is done by generating random numbers between 1 to (length of Chromosome – 1).  
 
In this case, generated random numbers should be between 1 and 3.  
 
After we get the crossover point, parents Chromosome will be cut at crossover point and its gens will 
be interchanged.  
 
For example we generated 3 random number and we get: C[1] = 1 C[2] = 1 C[3] = 2 
 
Then for first crossover, second crossover and third crossover, parent’s gens will be cut at gen 
number 1, gen number 1 and gen number 3 respectively, e.g. Chromosome[1] = Chromosome[1] >< 
Chromosome[4] = [02;21;18;03] >< [20;05;17;01] = [02;05;17;01] Chromosome[4] = 
Chromosome[4] >< Chromosome[5] = [20;05;17;01] >< [10;04;13;14] = [20;04;13;14] 
Chromosome[5] = Chromosome[5] >< Chromosome[1] = [10;04;13;14] >< [02;21;18;03] = 
[10;04;18;03]  
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Thus Chromosome population after experiencing a crossover process: Chromosome[1] = 
[02;05;17;01] Chromosome[2] = [10;04;13;14] Chromosome[3] = [12;05;23;08] Chromosome[4] = 
[20;04;13;14] Chromosome[5] = [10;04;18;03] Chromosome[6] = [20;01;10;06]  
 
Step (v).  
 
Mutation Number of chromosomes that have mutations in a population is determined by the 
mutation rate parameter.  
 
Mutation process is done by replacing the gen at random position with a new value.  
 
The process is as follows: 
 
First we calculate the total length of gen in the population.  
 
In this case the total length of gen is total_gen = number_of_gen_in_Chromosome x number of 
population = 4 x 6 = 24  
 
Mutation process is done by generating a random integer between 1 and total_gen (1 to 24).  
 
If generated random number is smaller than mutation_rate(ρm) variable then marked the position of 
gen in chromosomes.  
 
Assume that we define ρm as 10%, it is expected that 10% (0.1) of total_gen in the population that 
will be mutated:  
 
number of mutations = 0.1 x 24 = 2.4 ≈ 2  
 
Assume that the generation of random number yield 12 and 18 then the chromosome which have 
mutation are Chromosome number 3 gen number 4 and Chromosome 5 gen number 2. The value of 
mutated gens at mutation point is replaced by random number between 0-30.  
 
Assume that the generated random number are 2 and 5 then Chromosome composition after mutation 
are: Chromosome[1] = [02;05;17;01] Chromosome[2] = [10;04;13;14] Chromosome[3] = 
[12;05;23;02] Chromosome[4] = [20;04;13;14] Chromosome[5] = [10;05;18;03] Chromosome[6] = 
[20;01;10;06]  
 
After finishing the mutation process, we then have one iteration or one generation of the genetic 
algorithm.  
 
We can now evaluate the objective function after one generation:  
 
Chromosome[1] = [02;05;17;01] F_obj[1] = 2 + 2x5 + 3x17 + 4x1 - 30 = 37  
Chromosome[2] = [10;04;13;14] F_obj[2] = 10 + 2x4 + 3x13 + 4x14 – 30 = 77 
Chromosome[3] = [12;05;23;02] F_obj[3] = 12 + 2x5 + 3x23 + 4x2 – 30 = 47 
Chromosome[4] = [20;04;13;14] F_obj[4] = 20 + 2x4 + 3x13 + 4x14 – 30 = 93 
Chromosome[5] = [10;05;18;03] F_obj[5] = 10 + 2x5 + 3x18 + 4x3 - 30 = 56 
Chromosome[6] = [20;01;10;06] F_obj[6] = 20 + 2x1 + 3x10 + 4x6 - 30 = 46 
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From the evaluation of new Chromosome we see that the objective function is decreasing, this means 
that we have better Chromosome or solution compared with previous Chromosome generation.  
 
New Chromosomes for next iteration are: Chromosome[1] = [02;05;17;01], Chromosome[2] = 
[10;04;13;14], Chromosome[3] = [12;05;23;02], Chromosome[4] = [20;04;13;14], Chromosome[5] 
= [10;05;18;03], Chromosome[6] = [20;01;10;06]. 
 
These new Chromosomes will undergo the same process as the previous generation of Chromosomes 
such as evaluation, selection, crossover and mutation and at the end it will produce new generation 
of Chromosomes for the next iteration. 
 
This process will be repeated until a predetermined number of generations.  
 
For this example, after running 50 generations, best chromosome is obtained as Chromosome = [07; 
05; 03; 01]. 
 
This means that: a = 7, b = 5, c = 3, d = 1. 
 
If we use the number in the problem equation a +2 b +3 c +4 d = 30 7 + (2 x 5) + (3 x 3) + (4 x 1) = 
30. 
 
Thus, the values of the variables a, b, c and d generated by genetic algorithm satisfy the  equality. 
 


